In the early 20th century, Henry Ford built a car manufacturing plant on a 2,000-acre tract of land along the Rouge River in Michigan. Built to mass-produce automobiles more efficiently, the Rouge housed the equipment for developing each phase of a car, including blast furnaces, a steel mill and a glass plant. More than 90 miles of railroad track and conveyor belts kept Ford's car assembly line running. The Rouge model was lauded as the most efficient method of production at a time when bigger meant better.


Nanogears like these may replace current manufacturing processes.

The size of Ford's assembly plant would look strange to those born and raised in the 21st century. In the next 50 years, machines will get increasingly smaller -- so small that thousands of these tiny machines would fit into the period at the end of this sentence. Within a few decades, we will use these nanomachines to manufacture consumer goods at the molecular level, piecing together one atom or molecule at a time to make baseballs, telephones and cars. This is the goal of nanotechnology. As televisions, airplanes and computers revolutionized the world in the last century, scientists claim that nanotechnology will have an even more profound effect on the next century.

Nanotechnology is an umbrella term that covers many areas of research dealing with objects that are measured in nanometers. A nanometer (nm) is a billionth of a meter, or a millionth of a millimeter. In this edition of How Stuff Will Work, you will learn how nanomachines will manufacture products, and what impact nanotechnology will have on various industries in the coming decades.