Home     
 
 


   Top Subjects

Batteries
CDs
Cell Phones
Digital Cameras
Home Networking

Sponsored By:

   Categories
  
Building Blocks
Computers
Gadgets
Home Theater
ShortStuff
Telecommunications
Browse the Electronics Library

    
Main > Electronics > Telecommunications

How Cell Phones Work
by Marshall Brain and Jeff Tyson


 Introduction to How Cell Phones Work
The Cell Approach
From Cell to Cell
Cell Phones and CBs
Inside a Cell Phone
AMPS
Along Comes Digital
› Cellular Access Technologies
Cellular vs. PCS
Dual Band vs. Dual Mode
Problems with Cell Phones
Cell-phone Towers
Lots More Information

Cellular Access Technologies
There are three common technologies used by cell-phone networks for transmitting information:
  • Frequency division multiple access (FDMA)
  • Time division multiple access (TDMA)
  • Code division multiple access (CDMA)
Although these technologies sound very intimidating, you can get a good sense of how they work just by breaking down the title of each one.

The first word tells you what the access method is. The second word, division, lets you know that it splits calls based on that access method.

  • FDMA puts each call on a separate frequency.
  • TDMA assigns each call a certain portion of time on a designated frequency.
  • CDMA gives a unique code to each call and spreads it over the available frequencies.
The last part of each name is multiple access. This simply means that more than one user can utilize each cell.

FDMA separates the spectrum into distinct voice channels by splitting it into uniform chunks of bandwidth. To better understand FDMA, think of radio stations: Each station sends its signal at a different frequency within the available band. FDMA is used mainly for analog transmission. While it is certainly capable of carrying digital information, FDMA is not considered to be an efficient method for digital transmission.


In FDMA, each phone uses a different frequency.

TDMA is the access method used by the Electronics Industry Alliance and the Telecommunications Industry Association for Interim Standard 54 (IS-54) and Interim Standard 136 (IS-136). Using TDMA, a narrow band that is 30 kHz wide and 6.7 milliseconds long is split time-wise into three time slots.

Narrow band means "channels" in the traditional sense. Each conversation gets the radio for one-third of the time. This is possible because voice data that has been converted to digital information is compressed so that it takes up significantly less transmission space. Therefore, TDMA has three times the capacity of an analog system using the same number of channels. TDMA systems operate in either the 800-MHz (IS-54) or 1900-MHz (IS-136) frequency bands.


TDMA splits a frequency into time slots.

TDMA is also used as the access technology for Global System for Mobile communications (GSM). However, GSM implements TDMA in a somewhat different and incompatible way from IS-136. Think of GSM and IS-136 as two different operating systems that work on the same processor, like Windows and Linux both working on an Intel Pentium III. GSM systems use encryption to make phone calls more secure. GSM operates in the 900-MHz and 1800-MHz bands in Europe and Asia, and in the 1900-MHz (sometimes referred to as 1.9-GHz) band in the United States. It is used in digital cellular and PCS-based systems. GSM is also the basis for Integrated Digital Enhanced Network (IDEN), a popular system introduced by Motorola and used by Nextel.

Cool Facts
  • The GSM standard for digital cell phones was established in Europe in the mid-1980s -- long before digital cellular phones became commonplace in American culture.

  • It is now possible to locate a person using a cellular phone down to a range of a few meters, anywhere on the globe.

  • 3G (third-generation wireless) phones may look more like PDAs, with features such as video-conferencing, advanced personal calendar functions and multi-player gaming.

GSM is the international standard in Europe, Australia and much of Asia and Africa. In covered areas, cell-phone users can buy one phone that will work anywhere where the standard is supported. To connect to the specific service providers in these different countries, GSM users simply switch subscriber identification module (SIM) cards. SIM cards are small removable disks that slip in and out of GSM cell phones. They store all the connection data and identification numbers you need to access a particular wireless service provider.

Unfortunately, the 1900-MHz GSM phones used in the United States are not compatible with the international system. If you live in the United States and need to have cell-phone access when you're overseas, the easiest thing to do is to buy a GSM 900MHz/1800MHz cell phone for traveling. You can get these phones from Planet Omni, an online electronics firm based in California. They offer a wide selection of Nokia, Motorola and Ericsson GSM phones. They don't sell international SIM cards, however. You can pick up prepaid SIM cards for a wide range of countries at Telestial.com.

CDMA takes an entirely different approach from TDMA. CDMA, after digitizing data, spreads it out over the entire available bandwidth. Multiple calls are overlaid on each other on the channel, with each assigned a unique sequence code. CDMA is a form of spread spectrum, which simply means that data is sent in small pieces over a number of the discrete frequencies available for use at any time in the specified range.


In CDMA, each phone's data has a unique code.

All of the users transmit in the same wide-band chunk of spectrum. Each user's signal is spread over the entire bandwidth by a unique spreading code. At the receiver, that same unique code is used to recover the signal. Because CDMA systems need to put an accurate time-stamp on each piece of a signal, it references the GPS system for this information. Between eight and 10 separate calls can be carried in the same channel space as one analog AMPS call. CDMA technology is the basis for Interim Standard 95 (IS-95) and operates in both the 800-MHz and 1900-MHz frequency bands.

Ideally, TDMA and CDMA are transparent to each other. In practice, high-power CDMA signals raise the noise floor for TDMA receivers, and high-power TDMA signals can cause overloading and jamming of CDMA receivers.

In the next section, you'll learn about the difference between cellular and PCS services.

Lowest Price
1.Sprint Samsung SPH-i500 Mobile Phone $549.99
2.Handspring TREO 600 GSM/GPRS COMMUNICATOR CELLPHONE PALM ORGANIZER WIRELESS $499.00
3.Handspring Treo 270 Communicator - Phone & PDA - No Service $99.00
4.Sony Ericsson P900 (unlocked) $500.00
5.TREO 600 PDA/PHONE SPRINT PCS NETWORK ONLY WIRELESS CDMA $599.95

 

 
<< Prev Page    Intro    Next Page >>

  HSW Home


Table of Contents:
Introduction to How Cell Phones Work
The Cell Approach
From Cell to Cell
Cell Phones and CBs
Inside a Cell Phone
AMPS
Along Comes Digital
› Cellular Access Technologies
Cellular vs. PCS
Dual Band vs. Dual Mode
Problems with Cell Phones
Cell-phone Towers
Lots More Information


 
Search Google:
powered by Google  
Rate this Article!
 


Copyright � 1998-2003 Howstuffworks, Inc. All rights reserved.

Lycos (R) s a registered trademark of Carnegie Mellon University.

Privacy Policy | Children's Privacy Notice | Terms and
Conditions |  Standard Advertising Terms and Conditions