The Basics
Like a battery, a capacitor has two terminals. Inside the capacitor, the terminals connect to two metal plates separated by a dielectric. The dielectric can be air, paper, plastic or anything else that does not conduct electricity and keeps the plates from touching each other. You can easily make a capacitor from two pieces of aluminum foil and a piece of paper. It won't be a particularly good capacitor in terms of its storage capacity, but it will work.

In an electronic circuit, a capacitor is shown like this:

When you connect a capacitor to a battery, heres what happens:

  • The plate on the capacitor that attaches to the negative terminal of the battery accepts electrons that the battery is producing.
  • The plate on the capacitor that attaches to the positive terminal of the battery loses electrons to the battery.

Once it's charged, the capacitor has the same voltage as the battery (1.5 volts on the battery means 1.5 volts on the capacitor). For a small capacitor, the capacity is small. But large capacitors can hold quite a bit of charge. You can find capacitors as big as soda cans, for example, that hold enough charge to light a flashlight bulb for a minute or more. When you see lightning in the sky, what you are seeing is a huge capacitor where one plate is the cloud and the other plate is the ground, and the lightning is the charge releasing between these two "plates." Obviously, in a capacitor that large, you can hold a huge amount of charge!

Let's say you hook up a capacitor like this:

Here you have a battery, a light bulb and a capacitor. If the capacitor is pretty big, what you would notice is that, when you connected the battery, the light bulb would light up as current flows from the battery to the capacitor to charge it up. The bulb would get progressively dimmer and finally go out once the capacitor reached its capacity. Then you could remove the battery and replace it with a wire. Current would flow from one plate of the capacitor to the other. The light bulb would light and then get dimmer and dimmer, finally going out once the capacitor had completely discharged (the same number of electrons on both plates).

Like a Water Tower
One way to visualize the action of a capacitor is to imagine it as a water tower hooked to a pipe. A water tower "stores" water pressure -- when the water system pumps produce more water than a town needs, the excess is stored in the water tower. Then, at times of high demand, the excess water flows out of the tower to keep the pressure up. A capacitor stores electrons in the same way, and can then release them later.